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Summary

Inconsistent citations in the literature and questions about convergence prompt reexamination of
Hencky’s classic solution for the large deflections of a clamped, circular isotropic membrane under uni-
form pressure. This classic solution is observed actually to be for uniform lateral loading because the
radial component of the pressure acting on the deformed membrane is neglected. An algebraic error in
Hencky’s solution is corrected, additional terms are retained in the power series to assess convergence,
and results are obtained for two additional values of Poisson’s ratio.

To evaluate the importance of the neglected radial component of the applied pressure, the problem
is reformulated with this component included and is solved, with escalating algebraic complexity, by a
similar power-series approach. The two solutions agree quite closely for lightly loaded membranes and
diverge slowly as the load intensifies. Differences in maximum stresses and deflections are substantial
only when stresses are very high. The more nearly spherical deflection shape of the membrane under
true pressure loading suggests that a near-parabolic membrane reflector designed on the basis of the
more convenient Hencky theory would not perform as well as expected.

In addition, both theories are found to yield closed-form, nonuniform membrane-thickness distribu-
tions that produce parabolic middle-surface deflections under loading. Both distributions require that
the circular boundary expand radially in amounts that depend on material and loading parameters.

Introduction

Concepts for orbiting inflatable reflectors are of interest primarily because of their relative mechan-
ical simplicity, high area-to-mass ratio, and compact packaging characteristics. Essential to the design
and fabrication of inflatable reflectors is the ability to predict the reflector shape upon inflation. When
neither a deep reflector nor extreme surface precision is required, an attractively simple configuration is
an initially flat and unstressed circular elastic membrane attached at its perimeter to a stiff ring and sub-
jected to differential pressure. While uniform loading applied to a constant-thickness membrane will not
produce the exact paraboloidal reflector shape that is desired in numerous applications, the shape differ-
ence may be small enough for many purposes.

This paper, because of inconsistent citations in the literature (e.g., ref. 1) and questions about con-
vergence, reexamines Hencky’s original analysis (ref. 2) of the large deflections of a clamped, circular
membrane under uniform pressure. Hencky’s power-series approach is again employed, an algebraic
error is corrected, more terms are retained to assess convergence, and results are generated for two addi-
tional values of Poisson’s ratio.

Also, because Hencky’s problem actually involves uniformlateral loading (i.e., the radial compo-
nent of pressure on the deformed membrane is neglected), the boundary value problem for true uniform-
pressure loading is formulated and solved. Results for lateral deflections and membrane stresses from
both Hencky’s solution (corrected) and the uniform-pressure solution are presented in tabular and
graphical form, and comparisons are made between the two solutions.

 In addition, although neither problem solution yields an exactly paraboloidal deflection shape,
nonuniform membrane-thickness distributions that yield such shapes can be found for both loading
conditions. These distributions are derived in the appendix.

Symbols

a radius of membrane

a2n, b2n, n2m, w2m coefficients in power series

E modulus of elasticity

h thickness of membrane
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N dimensionless meridional stress resultant (Nr /(Eh) in Hencky’s problem,Nr /pa in
uniform-pressure problem)

Nr ,Nθ meridional and circumferential stress resultants, respectively

p uniform loading (lateral in Hencky’s problem, normal in uniform-pressure
problem)

q dimensionless loading parameter,pa/Eh

r, θ plane polar coordinates

u radial displacement

W dimensionless lateral deflection,w/a

w lateral deflection

α constant, (3 +µ)/2
εr ,εθ meridional and circumferential extensional strains, respectively

µ Poisson’s ratio

ρ dimensionless radial coordinate,r /a

Analysis

 The problem of the large deflections of a uniform-thickness, circular isotropic elastic membrane,
clamped at its boundary without pre-tension and subjected to uniform lateral loading (Hencky’s prob-
lem), is addressed first. Next, the same configuration under uniform pressure is analyzed.

Uniform Lateral Loading (Hencky’s Problem)

The governing equations are

radial equilibrium

(1)

lateral equilibrium

(2)

whereNr andNθ are, respectively, meridional and circumferential stress resultants,r is the radial coor-
dinate,w is the lateral deflection, andp is uniform lateral loading;

stress–strain

(3)

(4)

strain–displacement

(5)

(6)

Nθ
d
dr
----- rNr( )=

Nr
dw
dr
------- pr

2
------–=

Nθ µNr– Ehεθ=

Nr µNθ– Ehεr=

εθ
u
r
---=

εr
du
dr
------

1
2
--- dw

dr
------- 

 2
+=
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whereu is the radial displacement andµ is Poisson’s ratio. Equation (2) is the result of one integration
of the original lateral equilibrium equation (ref. 2) and use of the symmetry conditiondw/dr(0) = 0
along with the regularity ofNr at r = 0. The boundary conditions at the clamped edge are

(7)

(8)

Combining equations (1) and (3) through (6), and defining dimensionless quantitiesW = w/a,
N = Nr /(Eh) ,ρ = r/a, andq = pa/(Eh), the resulting equations are

(9)

(10)

Substitution of equation (10) into equation (9) gives

(11)

After Hencky’s approach, the following forms forN(ρ) and W(ρ) in equations (10) and (11) are
assumed:

(12a)

(12b)

By these choices, equations (10) and (11) become independent ofq, so that the power series in
equations (12a) and (12b), once determined for a specified value ofµ, are valid for allq. Also, substitut-
ing equation (12a) into the radial equilibrium equation gives, for the dimensionless circumferential
stress resultant,

Note that the form assumed forW(ρ) ensures term-by-term satisfaction of the boundary condition onw,
equation (7). Then equation (11) becomes

(13)

w a( ) 0=

u a( ) 0=

ρ d
dρ
------ d

dρ
------ ρN( ) N+

1
2
--- dW

dρ
-------- 

 2
+ 0=

N
dW
dρ
-------- 1

2
---qρ–=

N
2 d
dρ
------ d

dρ
------ ρN( ) N+

1
8
---q

2ρ+ 0=

N ρ( ) 1
4
--- q

2/3
b2nρ2n

0

∞

∑=

W ρ( ) q
1/3

a2n 1 ρ2n+2
–( )

0

∞

∑=

Nθ
Eh
-------

1
4
---q

2/3
2n 1+( )b2n ρ2n

0

∞

∑=

b0 b2ρ2
b4ρ4

b6ρ6 …+ + + +
 
 
 

2

4 2( )b2ρ 6 4( )b4ρ3
8 6( )b6ρ5

10 8( )b8ρ7 …+ + + +
 
 
 

8ρ–=
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Expanding the left side of equation (13) and equating coefficients of like powers ofρ yields the follow-
ing relations betweenb0, b2, b4, b6, …, which can be solved successively forb2, b4, b6, … in terms of
b0:

(14)

(15)

(16)

(17)

(18)

(19)

In all, the first 10 of these equations have been derived and solved. The results are

(20)

(21)

(22)

(23)

(24)

b0
2
b2 1–=

3b0
2
b4 2b0b2

2
+ 0=

6b0
2
b6 6b0b2b4 b2 b2

2
2b0b4+( )+ + 0=

10b0
2
b8 12b0b2b6 3b4 b2

2
2b0b4+( ) b2 2b0b6 2b2b4+( )+ + + 0=

15b0
2
b10 20b0b2b8 6b6 b2

2
2b0b4+( ) 3b4 2b0b6 2b2b4+( )+ + +

b2 b4
2

2b0b8 2b2b6+ +( )+ 0=

21b0
2
b12 30b0b2b10 10b8 b2

2
2b0b4+( ) 6b6 2b0b6 2b2b4+( )+ + +

3b4 b4
2

2b0b8 2b2b6+ +( ) b2 2b0b10 2b2b8 2b4b6+ +( )+ + 0=

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

b2
1

b0
2

-----–=

b4
2

3b0
5

---------–=

b6
13

18b0
8

------------–=

b8
17

18b0
11

--------------–=

b10
37

27b0
14

--------------–=
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1 (25)

(26)

(27)

(28)

(29)

In obtaining equations (14) through (29), extensive use has been made of the symbolic calculation
capabilities of Mathematica™ software (ref. 3). The lead coefficientb0 is evaluated through satisfaction
of the remaining boundary condition, equation (8), which in dimensionless form is

or, equivalently,

(30)

Substituting from equations (20) through (29) into equation (30) yields an equation inb0:

(31)

1In reference 2, Hencky terminated this sequence withb12, for which he reported the erroneous value of
Hencky’s error was corrected by J. D. Campbell in reference 4, where Hencky’s problem also was generalized to include arbi-
trary initial tension.

™Mathematica is a registered trademark of Wolfram Research, Inc.

b12
1205

567b0
17

-----------------–=

407/189b0
17

.–

b14
219241

63504b0
20

------------------------–=

b16
6634069

1143072b0
23

------------------------------–=

b18
51523763

5143824b0
26

------------------------------–=

b20
998796 305

56582064b0
29

---------------------------------–=

ρ d
dρ
------ ρN( ) µN–

 
 
 

ρ=1

0=

1 µ–( )b0 3 µ–( )b2 5 µ–( )b4 7 µ–( )b6 …+ + + + 0=

1 µ–( )b0 3 µ–( ) 1

b0
2

-----– 5 µ–( ) 2

3b0
5

---------– 7 µ–( ) 13

18b0
8

------------– 9 µ–( ) 17

18b0
11

--------------–

11 µ–( ) 37

27b0
14

-------------- 13 µ–( ) 1205

567b0
17

-----------------– 15 µ–( ) 219241

63504b0
20

------------------------––

17 µ–( ) 6634069

1143072b0
23

------------------------------– 19 µ–( ) 51523763

5143824b0
26

------------------------------– 21 µ–( ) 998796305

56582064b0
29

---------------------------------– …+ 0=
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For each specified value ofµ, solution of a suitably truncated version of equation (31) yields the
single value ofb0 for whichb0 > 1. (The infinite series in eq. (31) diverges for−1 ≤ b0 ≤ 1, andb0 ≤ −1
implies compressive stresses.) To investigate the convergence ofb0 with the number of terms retained,
a sequence of truncated versions of equation (31) containing from 2 to 11 terms can be solved to provide
a sequence of values ofb0. This process has been done for each of the three values ofµ considered
herein. The results with 11 terms retained, which differ very little from those with only 6 terms retained
(as was done in ref. 2), are presented in the following table.

With the value ofb0 in hand, the truncated power series for both stress resultants and the radial dis-
placement are completely determined. To obtain the coefficients in the series forW(ρ), expressions
(12a) and (12b) are inserted into equation (10), which becomes

(32)

Equating coefficients of like powers ofρ yields the following relations between the two sets of
coefficients:

(33)

aLargely because of an error in the eval-
uation ofb12, Hencky obtainedb0 = 1.713.
By apparently truncating equation (12a)
of the present paper after theb12 term,
Campbell obtained a value forb0 of 1.724,
which is very close to the value of 1.7244
found herein.

µ b0

0.2 1.6827
0.3 1.7244a

0.4 1.7769

b0 b2ρ2
b4ρ4

b6ρ6 …+ + + +
 
 
 

a0 2a2ρ2
3a4ρ4

4a6ρ6 …+ + + +
 
 
 

1=

b0a0 1=

2b0a2 b2a0+ 0=

3b0a4 2b2a2 b4a0+ + 0=

4b0a6 3b2a4 2b4a2 b6a0+ + + 0=

5b0a8 4b2a6 3b4a4 2b6a2 b8a0+ + + + 0=

. . . . . . .

. . . . . . .














. . . . . . .
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Successive solution of equations (33) fora0, a2, a4, … combined with equations (20) through (29)
gives

(34)

Substitution of these coefficients into equation (12b) gives the dimensionless lateral displacementW(ρ).
At this point, truncated power series can be written for all stress resultants and displacements. Tables
and graphs of stress resultants and displacements are deferred until comparisons can be made with cor-
responding results from the solution for uniform pressure.

Uniform Pressure

All of the equations governing the uniform-pressure problem are identical to those of Hencky’s
problem (i.e., eqs. (1) through (8)) except for equation (1), the radial equilibrium equation. The new
radial equilibrium equation can be obtained by application of the principle of virtual work or by
summing forces on an infinitesimal element of the deformed membrane. By noting that wherever the

a0
1
b0
-----=

a2
1

2b0
4

---------=

a4
5

9b0
7

---------=

a6
55

72b0
10

--------------=

a8
7

6b0
13

-----------=

a10
205

108b0
16

-----------------=

a12
17051

5292b0
19

--------------------=

a14
2864485

508032b0
22

---------------------------=

a16
103863265

10287648b0
25

---------------------------------=

a18
27047983

1469664b0
28

------------------------------=

a20
42367613873

1244805408b0
31

----------------------------------------=












































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membrane has nonzero slope the normal pressure has a radial component (neglected in Hencky’s prob-
lem), the radial equilibrium equation is seen to be

(35)

Combining equations (35) and (3) through (6) yields

(36)

which must be satisfied along with

(37)

The boundary condition on radial displacement takes the slightly more involved form

(38)

The nondimensionalization employed in solving Hencky’s problem does not lead here to versions
of equations (36) and (37) that are independent ofq. Nevertheless, the nondimensionalization was used
initially in the solution process, but was abandoned when inaccuracies were encountered in the numeri-
cal evaluation of series coefficients. With the definitionsρ = r/a, W = w/a,N = Nr /pa,andq = (pa)/(Eh),
equations (36) and (37) become

(39)

whereα = (3 +µ)/2, and

(40)

Substituting the assumed form

(41)

Nθ
d
dr
----- rNr( ) pr

dw
dr
-------–=

Nr
2

r
2 d

2
Nr

dr
2

------------ 3r
dNr

dr
----------+

 
 
  p

2
r
3

2
-----------

dNr

dr
----------–

3 µ+
2

------------ 
  p

2
r
2
Nr

Ehp
2
r
2

8
-------------------+ + 0=

Nr
dw
dr
------- pr

2
------–=

r
d
dr
----- rNr( ) µNr– pr

dw
dr
-------–

 
 
 

r=a

0=

N
2 ρ2 d

2
N

dρ2
---------- 3ρ dN

dρ
-------+

 
 
  1

2
---ρ3 dN

dρ
-------– αρ2

N
1
8
--- ρ2

q
-----+ + 0= q 0>( )

N
dW
dρ
-------- 1

2
---– ρ=

N ρ( ) n2mρ2m

0

∞

∑=
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into equation (39) and equating coefficients of like powers ofρ gives the following sequence of rela-
tions betweenn0, n2, n4, n6, …, which can be solved forn2, n4, n6, … in terms ofn0:

(42)

The first eight of these equations have been derived and solved, although only the first six are shown in
equations (42) because of rapidly increasing algebraic complexity. For the same reason, only the first
four solutions are shown here.

(43)

In the development of equations (42) and (43), the Mathematica system was again used extensively.
Substitution of equations (43) into equation (41) yields the power series forN(ρ) in terms of the yet-
undetermined coefficientn0 that, in this problem, depends on bothµ and q. However, before the

8n0
2
n2 αn0

1
8q
------+ + 0=

24n0
2
n4 16n0n2

2 α 1–( )n2+ + 0=

48n0
2
n6 48n0n2n4 8 2n0n2 n2

2
+( )n2 α 2–( )n4+ + + 0=

80n0
2
n8 96n0n2n6 24 2n0n4 n2

2
+( )n4 16 n0n6 n2n4+( )n2 α 3–( )n6+ + + + 0=

120n0
2
n10 160n0n2n8 48 2n0n4 n2

2
+( )n6 48 n0n6 n2n4+( )n4+ + +

8 2n0n8 2n2n6 n4
2

+ +( )n2 α 4–( )n8+ + 0=

168n0
2
n12 240n0n2n10 80 2n0n4 n2

2
+( )n8 96 n0n6 n2n4+( )n6+ + +

24 2n0n8 2n2n6 n4
2

+ +( )n4 16 n0n10 n2n8 n4n6+ +( )n2 α 5–( )n10+ + + 0=

. . . . . . . . . . . . .

. . . . . . . . . . . . .. . . . . . . . . . . . .


























n2

1 8αn0q+( )

64n0
2
q

------------------------------–=

n4

1 8αn0q+( ) 1 4n0q 4αn0q+ +( )

6144n0
5
q

2
--------------------------------------------------------------------------------–=

n6

1 8αn0q+( ) 13 96n0q 128αn0q 128n0
2
q

2
576αn0

2
256α2

n0
2
q

2
+ + + + +( )

4718592n0
8
q

3
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------–=

n8 1 8αn0q+( ) 39( 366n0q 670αn0q 288n0
3
q 960n0

2
q

2
4608αn0

2
q

2
+ + + + +–=

3584α2
n0

2
q

2
4608n0

4
q

2
768n0

3
q

3
6272αn0

3
q

3
14208α2

n0
3
q

3
+ + + + +

5632α3
n0

3
q

3
36864αn0

5
q

3
18432α2

n0
5
q

3
–++ )/754 974720n0

11
q

4

. . . . . . . . . . . . .

. . . . . . . . . . . . .. . . . . . . . . . . . .
























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remaining boundary condition, equation (38), can be applied to evaluaten0, equation (40) must be used
to express the coefficients in the assumed series

(44)

in terms ofn0. Substituting equations (41) and (44) into equation (40) and equating coefficients of like
powers ofρ gives the system of simultaneous equations

(45)

from whichw0, w2, w4, … can be found in terms ofn0. For the sake of brevity, only the first five solu-
tions are shown:

(46)

Now n0 can be evaluated through satisfaction of the boundary condition on radial displacement,
equation (38), which has the dimensionless form

(47)

W ρ( ) w2n 1 ρ2n+2
–( )

0

∞

∑=

n0w0
1
4
---=

2n0w2 n2w0+ 0=

3n0w4 2n2w2 n4w0+ + 0=

4n0w6 3n2w4 2n4w2 n6w0+ + + 0=

5n0w8 4n2w6 3n4w4 2n6w2 n8w0+ + + + 0=

. . . . . . .

. . . . . . .. . . . . . . 















w0 1/4n0=

w2 1 8αn0q+( )/512n0
4
q=

w4 1 8αn0q+( ) 5 8n0q 32αn0q+ +( )/147456n0
7
q

2
=

w6 1 8αn0q+( ) 55( 192n0q 704αn0q 128n0
2
q

2
1344αn0

2
q

2
+ + + +=

2176α2
n0

2
q

2)/75497472n0
10

q
3

+

w8 1 8αn0q+( ) 259( 1366n0q 5030αn0q 288n0
3
q 1920n0

2
q

2
+ + + +=

19008αn0
2
q

2
31744α2

n0
2
q

2
4608n0

4
q

2
768n0

3
q

3
+ + + +

13952αn0
3
q

3
65408α2

n0
3
q

3
64512α3

n0
3
q

3
36864αn0

5
q

3
+ + + +

18 432α2
n0

5
q

3)/15099494400n0
13

q
4

–

. . . . . . . . . . .

. . . . . . . . . . .. . . . . . . . . . .




























ρ d
dρ
------ ρN( ) µN– ρ dW

dρ
--------–

 
 
 

ρ=1

0=
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Substitution of equations (41) and (44) into equation (47) yields

(48)

in whichw0, w2, w4, … are given in terms ofn0 by equations (46).

Substitution of equations (43), givingn2, n4, n6, … in terms ofn0, and equations (46), givingw0,
w2, w4, … in terms ofn0, into equation (48) yields an equation for the lead coefficientn0. After specifi-
cation of values forµ andq, various truncations of this equation can be solved until a satisfactorily con-
verged value ofn0 is obtained. This value ofn0 can then be used along with equations (43) to write the
explicit truncated series forN(ρ). Similarly, equations (46) can be inserted into equation (44) to produce
the series forW(ρ). With these two series in hand, expressions for all other variables of interest can be
generated.

Results and Discussion

Lateral Deflections

The variables of greatest interest in the design of membrane reflectors are the lateral deflectionw
and the meridional stress resultantNr. In figure 1, the dimensionless lateral deflectionW = w/a for
Hencky’s problem is plotted as a function ofρ = r/a, the dimensionless radial coordinate, forq = 0.001,
0.01, and 0.1 andµ = 0.2, 0.3, and 0.4.

Note that, in Hencky’s problem, the family of curves for a fixed value ofq can be used to produce
curves for any other value ofq by appropriate adjustment of the vertical scale. The same is not true,
however, in the solution to the uniform-pressure problem. Figure 2 contains plots of the lateral deflec-
tion from the uniform-pressure problem for the same set of values ofµ andq shown in figure 1. In both
solutions, as deflections increase withq, so do the Poisson’s-ratio-related differences among them, with
larger values ofµ corresponding to smaller deflections.

To illustrate the effect on lateral deflection of retaining the radial component of the pressure, results
from figures 1 and 2, forµ = 0.3 only, are plotted together in figure 3 forq = 0.001, 0.01, and 0.1. For
q = 0.001, the deflections for the two loading cases are nearly identical, as would be expected, because
the radial component of the pressure is proportional todw/dr, which is everywhere small whenq is
small. In fact, even forq = 0.01, the deflection differences are still very small although they could have
some significance for application to high-precision surfaces for electromagnetic reflectors. Forq = 0.1,
a value that corresponds to very high membrane stresses, a basic difference between the deflection
shapes is quite apparent. The uniform-pressure loading causes a more nearly spherical shape, one that is
even farther removed from the ideal paraboloid than the shape predicted by the solution to Hencky’s
problem. Thus, the present results indicate that a reflector design based on the solution to Hencky’s
problem would likely overestimate electromagnetic performance. With regard to achieving the ideal
deflection shape, nonuniform membrane-thickness distributions that lead to paraboloidal middle-
surface deflection shapes can be found in both problems. Details of the analyses are presented in the
appendix.

Another useful way of viewing the results is by envisioning the loaded membrane as a nonlinear
spring. Figure 4 contains plots of the dimensionless loading parameterq as a function of the dimension-
less center deflectionw(0)/a from each solution for the three values of Poisson’s ratio. Both solutions
depict systems that are stiffening with increasing load, as evidenced by the increasing slopes, especially
at the larger values ofq, with the normal pressure solution representing the stiffer system.
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Stress Resultants

Figure 5 contains plots of the dimensionless meridional stress resultantNr /(Eh) for q = 0.001, 0.01,
and 0.1, withµ = 0.2, 0.3, and 0.4. Forq = 0.001, the curves for Hencky’s problem and for the normal-
pressure case are indistinguishable on the figure. Forq = 0.01, differences between the two solutions
still appear to be quite small, particularly at the scale used for the figure. The differences become more
pronounced asq continues to increase until, forq = 0.1, the uniform-pressure stresses substantially
exceed those of Hencky’s problem at the center, while the opposite is true at the boundary. The follow-
ing table contains a list of values of the maximum dimensionless stress resultantNr (0)/(Eh) from both
solutions as a function ofq for all three values ofµ.

Thus, while it appears that for allq > 0 the solution to Hencky’s problem understates the maximum
membrane stress resultant (Nr(0), which is equal toNθ(0) in either solution), the discrepancy is substan-
tial only for largeq, in which case the stress resultants predicted by either theory are very large.

Concluding Remarks

The stresses and large deflections of a clamped, circular membrane have been analyzed for two
types of loading: uniform lateral loading (Hencky’s problem) and uniform-pressure loading. Results for
the two types of loading have been shown to agree quite closely when the membrane is lightly loaded
and to diverge slowly as load intensity is increased. The deflection shapes from the uniform-pressure
solution are more nearly spherical than those from the solution to Hencky’s problem, especially at the
higher load intensities. This result suggests that a near-paraboloidal inflatable reflector designed on the
basis of the more convenient Hencky solution would overestimate electromagnetic performance
because of shape-accuracy shortcomings.

Both problems were found to yield closed-form nonuniform membrane-thickness distributions that
produce exact paraboloidal middle-surface deflection shapes. The fabrication of such variable-thickness
membranes appears to pose a daunting challenge.

NASA Langley Research Center
Hampton, VA 23681-2199
March 11, 1997

Uniform pressure Hencky

q µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.2 µ = 0.3 µ = 0.4

0.001 0.00425 0.00435 0.00448 0.00421 0.00431 0.00444
.002 .00677 .00693 .00714 .00668 .00684 .00705
.003 .00890 .00911 .00938 .00875 .00897 .00924
.005 .0126 .0129 .0133 .0123 .0126 .0130
.008 .0173 .0177 .0183 .0168 .0172 .0178
.010 .0202 .0207 .0213 .0195 .0200 .0206
.020 .0326 .0333 .0343 .0310 .0318 .0327
.030 .0433 .0443 .0456 .0406 .0416 .0429
.050 .0622 .0637 .0655 .0571 .0585 .0603
.100 .1032 .1057 .1086 .0906 .0929 .0957
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Appendix

Membrane-Thickness Distributions That Yield Parabolic Deflection Shapes

 To find thickness distributions that yield parabolic middle-surface deflections under uniform load-
ing, the governing equations are approached under the assumptions thatw(r) is a prescribed parabola
and the thicknessh(r) is to be determined. The variable-thickness version of Hencky’s problem is
addressed first, followed by the uniform-pressure problem.

Hencky’s Problem

The governing equations are repeated here for convenient reference.

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

A parabolic deflection shape is assumed.

(A7)

wherew0 is an unspecified rigid-body translation andW is the strain-related maximum deflection, so
that

(A8)

Then equations (A1) and (A2) yield

(A9)

Combining this result with equations (A3) through (A6) gives
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and
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Substitution of equation (A11) into (A10) and some simplification yield

(A12)

After integration, with the definitionh(0) = h0, the solution is found to be

(A13)

which, on physical grounds, requires satisfaction of the inequality

(A14)

Note that, for sufficiently small values of the quotient in the denominator of equation (A14), the
radial thickness variation is very nearly parabolic. The focal lengthF of the parabolic deflection shape is
given byF = a2/4W, so thatW = a/8(F/D), whereD = 2a is the diameter of the circular reflector. Then,
in terms of dimensionless ratios, an alternate form for equation (A13) is

(A15)

Also, equation (A9) can be rewritten as

(A16)

in which σ0 is the (maximum) membrane stress atr = 0, whereh(r) is minimum. Thus, with the focal
lengthF prescribed and an acceptable working value chosen forσ0, equation (A16) enables a family of
choices forp andh0 that, along with values forD and material propertiesE andµ, can be inserted into
equation (A15) to produce a family of candidate thickness profiles from which to choose. Clearly, the
larger the value ofF/D (i.e., the shallower the reflector) the greater the freedom in assigning values to
the remaining parameters.

 Note that this solution cannot be made consistent with the original boundary conditionu(a) = 0.
From equations (A4), (A6), and (A9), the radial displacement takes the form

(A17)

from which it is clear thatu(r) must be positive for allr > 0. Thus, in the variable-thickness version of
Hencky’s problem, achieving the parabolic deflection shape would also require an appropriate uniform
expansion of the circular boundary.

Uniform-Pressure Problem

The governing equations for this problem are equations (A2) through (A6) along with
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in place of equation (A1). Assumption of the same parabolic displacement function, equation (A7),
leads to

(A19)

and

(A20)

Insertion of equations (A19) and (A20) into equations (A3) and (A4) followed by substitution of the
results into equations (A5) and (A6) leads to

(A21)

(A22)

Eliminatingu(r) between equations (A21) and (A22) gives

(A23)

Differentiation followed by simplification, where possible, leads to a linear first-order differential equa-
tion in 1/h(r) with variable coefficients. Its solution with the help of an integrating factor yields

(A24)

where, again,h0 = h(0). Clearly,h(r) has its minimum value atr = 0.

An alternate form of equation (A24) in terms of the dimensionless ratios employed earlier is

(A25)
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or, equivalently,

(A26)

can be used along with combinations of material and geometric properties, some of which are likely to
be mandated by a particular application, to produce various candidate thickness distributions from
which to choose. As in the preceding problem, achieving the parabolic deflection shape would require
appropriate expansion of the circular boundary, which is apparent from equation (A22).

The fabrication of a membrane with a thickness distribution mandated by either of these theories
may be beyond the current state of film manufacturing technology. Of the two families of thickness
distributions, the one appropriate to Hencky’s problem may be nearer to achievable, possibly by use of
a rotating, ultraflat film-fabrication table, because it is very nearly parabolic when the thickness varia-
tion relative to the minimum thickness is not too great.

pF σ0h0=
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